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ABSTRACT

-Two unsteady flows dominated by the occurrence of separation are simulated

through the use of the discrete vortex model. The first of these is a sinusoidally

oscillating flow about a circular cylinder at a Keulegan-Carpenter number of' K - 10.

The vortex model has been combined with the boundary layer calculations and the

positions of the separation and stagnation points, the evolution of the wake. the

velocity and pressure distributions, and the instantaneous forces have been calculated

and compared, whenever possible, with those obtained experimentally. The model has

successfully simulated the occurrence of the transverse half Karman vortex street. The

calculated positions of the vortices were found to be in good agreement with those

obtained experimentally. The measured and calculated in-line forces and the

diiferential pressure distributions showed reasonably good agreement.

The second simulation dealt with a rapidly decelerating flow about a two-

dimensional sharp-edged camber. An extensive study of the velocity field in the

vicinity of- tLe singular points led to the development of a novel method for the

introduction of vorticity at variable time intervals. The measured and calculated

characteristics of the flow. such as the evolution of the wake and the forces acting on

the camber, were lbund to be in excellent agreement. Furthermore, the simulation

provided a plausible explanation for the cause of parachute collapse, a phenomenon
which gave impetus to the numerical and physical experiments described herein.
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I. DISCRETE VORTEX ANALYSIS OF SINUSOIDALLY OSCILLATING
FLOW

ABOUT CIRCULAR CYLINDERS

A. INTRODUCTION
The separated steady and unsteady flows about bluff bodies have been almost

completely unyielding to both analysis and numerical simulation for a number of
mathematical reasons and fundamental fluid dynamic phenomena. Separation gives
rise to the formation of free shear layers which roll up into vortex rings or counter-
rotating vortices. They, in turn, interact with each other, with the counter-sign vorticity
generated at the base of the body, and with the motion of often unknown separation

points. The wake becomes unsteady even for a steady ambient flow and the problem
of the determination of the characteristics of the wake becomes coupled to the
conditions prevailing upstream of the separation points. Evidently, viscosity modifies

radically the inviscid flow, which, in this case, cannot serve even as a first
approximation to the actual flow. The boundary layer equations are not applicable

beyond the separation points and are, therefore, of limited use in bluff-body flow

problems.
Fage and Johansen's pioneering experimental work (1928), Gerrard's (1966)

vortex formation model, and Roshko's (1954) numerous contributions, followed by a
large number of important papers, have provided extremely useful insights into the
mechanism of vortex shedding. It became clear that a two-dimensional body immunersed
in a two-dimensional steady flow does not give rise to a two-dimensional steady wake

and only a fraction (about 60% for a circular cylinder) of the original-circulation
survives the vortex formation. It also became clear that bluff-body flows exhibiting
separation, turbulence, and time-dependence are almost completely unyielding to both

analysis and simulation even if the ambient flow is assumed to be time invariant.
Many flows of practical interest are unsteady. i.e., the characteristics of the

ambient flow are time-dependent. In the past twenty years or so a large number of
theoretical and experimental studies have been carried out. These dealt primarily with
unseparated laminar flows, the early stages of impulsively started flow over plates and
cylinders (numerical and experimental studies), and oscillating flows with zero or non-

zero mean flow (on an infinite flat plate and over a cylinder with streaming flow, a!l

14
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under laminar flow conditions) for the purpose of studying the effects of flow

unsteadiness on the transition mechanism and turbulence development (see e.g.

Bradbury et al. 1982). Very little has been attempted either theoretical!y or

experinmentally to analyze the wake-boundary-layer interaction in time-dependent flows

(i.e., with unsteady ambient flow).

The subject of separated time-dependent flow at large Reynolds numbers is lesser

developed but of greater practical importance (particularly to marine related topics)

relative to other classical component disciplines of fluid mechanics.

A number of unsteady flow machines and their use in the investigation of

unsteady turbulent boundary layers have been reviewed and documented by Carr

(19S1). These included flat plate, diffuser, pipe, airfoil, and cascade flows. The results
have shown that (i the time-averaged mean velocity profile is almost always the same

as the velocity profile that would occur in a steady flow having an equivalent mean

external flow velocity- (ii) the turbulent structure in the oscillating flow is not changed
from the equivalent steady-state counter part; and (iii) the unsteady efTcts are often

confined to a thin layer near the wall, while the outer region of the boundary layer is
not strongly affected. These conclusions, apparently valid for unsteady "urbulent

boundary layer flows, are not applicable to unsteady separated, turbulent, bluff-body

flows.

The separated unsteady flow situations involving wake return, as in the case of a

sinusoidally oscillating flow about a cylinder, or wake retardation, as in the case of a

decelerating parachute, are an order of magnitude more complex.
In steady flow the position of the separation points is nearly stationary, except

for small excursions of about 3 degrees (on a circular cylinder). Furthermore, the
interfierence between the vortices and the body is confined mostly to the vortex

lormation region.

For oscillating flows the net effect of the shed vortices is twofold. Firstly. their

return to the body dramatically affects the boundary layer, outer flow. pressure
distribution, and the generation and survival rate of the new vorticity. Secondly. they

nct onl give rise to additional separation points (during the early stages of the flow

reversalb but also strongly affect the motion of the primary separation ponts. These

effects -re further compounded by the diffusion and decay of vortices and by the three-
dimensional nature of the flow (all of which give rise to cycle-to-cvcle %ariauon .

numerous flow modes, etc. ). The stronger and better correlated the returning vortices,

15



the sharper and more pronounced the changes are in the pressure distribution on the

body and in the integrated quantities such as lift, drag, and inertia coefficients.

Nevertheless. the Increased correlation does not entirely eliminate the consequences of

the stochastic variations in the motion of vortices.

In periodic flow. the mobile separation points (when they are not fixed by sharp

edges. -undergo large excursions as much as 120 degrees during a given cycle of

os,:Ilacmg flow over a circular cylinder). This experimental fact renders the treatment

of bcund.,,'% layers on bluff-bodies subjected to periodic wake return extremely diflicult.

par:icuialv when the state of the boundary layer changes during a given cycle.

Furthermore, the classical criterion of separation for steady flow, i.e.. the vanishing of

;kin r!,ction on the body, is no longer valid for unsteady flow. According to the MRS
criterion iMoore 195S. Rott 1956. and Sears 1972). it is the simultaneous vanishing of

the shear and velocity at a point within the boundary layer that determines the

separation point. Furthermore, the time rate of change of circulation is no longer

-iven by dF dt 0.5L' as in steady flow, where U5 is the outer flow velocity at

Craration, bu iy (0.L S2 - L.c6 ) where cO is the speed of the separation point. It is

clear from the fbregoing that there is little hope of devising a satisfactory theoretical

model befbre something is understood of the unsteady processes associated with the

formation and reversal of the wake, spanwise coherence, the sensitive dependence of

the moton of vortices on small changes in the previous conditions and on the nature

o transition in oscillating flow about smooth and rough cylinders.

B. NUMERICAL SOLUTION OF THE NAVIER-STOKES EQUATIONS

For steady ambient flow about bluff bodies (mostly cylindrical and airfoils). the

numeriai studies based on the use of the steady or unsteady form of the Navier-Stokes

equations and some suitable spatial and temporal diflrencing schemes are linited, ot

of necessitv, to relatively low Reynolds numbers (less than about 1.000) tsee e.g..

Lec.:nte & Piquet (19841 for a finite difference solution and Gresho et al. (19S-) !or a

nure clement solution). The major obstacles to the application of either the finite

";I.,rence or the finite element methods to higher Reynolds number laminar llok are

StAb:::t'., computation time. treatment of the boundary conditions, and accuracy. Even

S "':.k.1.h many dIfferencing schemes have been developed to overcome the in-tabi:tv

p'rah>n'. R ache 19-'), maintaining stability continues to be a problem with

,n;re:;sin, R,.n, -s number. The truncation errors decrease the apparent Rex i;od

a:::.ber iv :zroduci:n an unknown artificial viscosity. Lven if the prc:v:,

-4 16



associated with stability and truncation errors were to be resolved, the attempt to

obtin solutions of' the \avier-Stokes equations at higher Reynolds numbers are

liited by a fundamental !1lid dynamic phenomenon: the stability of the flow itself

When the flow becomes turbulent either in the wake and or in the boundary layers.

one needs a closure miodel focr turbulence to solve the Reynolds equations For a time-

dePendcnE. tbhree-diniensional. separated. turbulent flow (even if the ambient flow is

smiooth and the bluIT body is; two dimensional). Clearly, the roots of* the most serious

prol1mi In the solution of' the- Navier-Stokes equations are buried in the physics of

rurbulence. The stability and truncation-error problems associated with the

di~ffrencing schemes may be resolved but the problem of turbulence appears to

transcend all efforts.

The numerical solution of unsteady incompressible Navier-Stokes equations in

their vortici-tv-stream-function formulation has been investigated by numerous

researche.-s through the use of various finite-difference techniques. These studies

ccwern mostly the separated flow about circular cylinder and prisms at relatively low

Revnolds numbers (see e.g.. Davis & Moore 1982).

It appears that the existing numerical methods cannot vet treat the high

Reyrolds number flows with suflicient accuracy for a number of reasons. The finite

difference sc-hcmnes require a very fine grid, a turbulent model. and a very lare

computer memory. It seems that the modelling of' the turbulent stresses in the wake.

particul.irlY in time-dependent flows, will be the major source of dificultY in all future

LaILcU!"'ons. Whether or not it will ever be practical to apply the finite difference and

::n:,Le element methcds to high Reynolds number flows is unknown. The inherent

X~Tiult ies are certainly significant enough to warrant exploring other solution

C. VORTEX METHODS

1. Discrete Vortex Analysis

Certain separated unme-dependent flows may be simulated through the use of'

the dJScrete vortex model DVMI (see e.gz. Chorin 1973; Sarpkaya H-5). Phe f'ree

shear hJ'.ers which emanate from the sides of the body are represented hy an assenhNy

of ~~cctevcrties. It has not yet been proven that a continuous %ortex 41eet rit% he

SO drt/d ThuIs, attention Is given here to large scale vortex -;tructUres rather than

tco sml-s-1c:s:abilities resi.lting f'romi the vortex interaction,. Iurthermore. onl. the

%".t rnp i l'ires ct' Ih nethod. As It Is applied to sinuILIOidalv O\Lc:A11Tin' 11laX

, ot a mfl t ~tfl i: Jer are described.



The previous attempts to appl% the DVM to oscillating flow had either gross,
simplhflca zions or met with various difliculties. Ward and Dalton l 969) con-;1dercd

onl% Ow~ symmetric flow situation with fixed sep..ration points. Stansby' 1197'. 1979
1 9,S I fixed the separation points at * 90 degrees and used the velocity of the nascert

% ortex rather than the velocit% at thle separation point to calculate the % ortcx strengths.
This resuted in s i-nificantlv less vorticitv input and prevented the returning % ortices
1'rom interactine freR with the boundary lavers and separation points. SubseCquently.

Stansb, and Dixon 1983) used a Lagranizian vortex scheme and replacci thle hody
surface b% a pol,,gon of line segments. The strengths of the segments of vortex sheet

needed to establish the zero-velocity condition on the surface were deternmned Fromn thle
in'erse of' an influence matrix and the tangential velocities just inside the surface.
Subscuuentlv. the segments were replaced by one or more point vortices. Stansb%'s

calculations for Keulegan-Carpenter number K = 10, (K LinMT D). failed to predict
thle transverse vortex street observed experlimen tally.

S.varazi and \akamura (1979) deternmed the separation points using
SclichiL.ng-s 193 periodic boundary laier theory (valid only for K < <I ). the% have
not used tile Kutta condition and incorrectly included an image vortex at thle center of
the c-, linder. Finally. the calculations wvere performed For only three- quarters of a

cycle. hardly enough time f'or the transient flow to develop into quasi-stead% state.
Kudo (19-9. l9SI) investigated the sinusoidally oscillating flow about a flat plate
normal to the flow. The wake was assumed to remain sininetrica!. Kudos. model

used a Kutta condition. combined with a highly complicated force-and momiec~tumi-free

nascent %crtex placement scheme. Ikeda and Ifinienio (19811 studied thle oscillating
flov- about a cylinder and a Lewis form. Separation poinswrasuetoe vn

by Schlchting's 41932) solution. As with Sawarai and Nakamura (1-1 tile% hae
I:incorrc;ctl, retained the image vortices at the center of- the c-,linder.

rlhe discrete % ortex model, as used in the present in~ estication. is relati~ clv,
fre,. fromr the arbitrary assumptions and inconsistencies noted above. llowe~er. the
.inc Ius on of the effect of turbulence in the boundary layers and in the \%.ke rcmains

Unrc~i\ edAs it will be noted shortly, the determination of' the separation point%~

rear~ the use oC a separat ion criteria based on a laminar or turf-ulent flo,.

%cp<r % %



2. Formulation of the Problem
'The complex velocity potential may be written as

Wi Um -v r, )-- f4 Ln (z - z, ) Ln (z- )dl

where L it = sin i27rt T), r I and znare the strength and position of' the ri-th %crtex.

The %elocities are normalized by UM and the distances by c. 'The complex %elocit% is

_.en L,% JW di =-U iv

The instantaneous force actine on the cylinder may he calculated either

tiirough~l the integration of pressure or through the use of the rate of chiangze ot impulse.

It is; rkelati'~el% eas% tc show that the pressure on the cylinder is given h%~

= U t)--os j i' M _ In z n
C, 2it -. (s -, p I-!rn(P i

C.2Ci in ( n 17 n

In terms of dimensional quantities. the use of the rate of change of' inpukse

,z :cI 

'' c D and 1. represent, respect ively, the in-line and trans% erse fores

Specific Details of Creation and Convection of the Vortices
[he solution procedure employed was as follows:

I The posit,,ons of the stagnatic-is points at the upstream anJ do,.;nstrcam- 1:aces

of ,he t Nlinder are calculated. For this purpose. the po:w,; It- whiich the

i ,P s /ero and chances its sicmn arc located, startine tron -,he moo,: rcexnt

stjcnjatiori point,- When the ambient flow reverses Its direc~ion 4.it die

reynnnizig of each ~d thle staiziation points ;%%1tch tlle:r -e lit1O71',4!

Upstreamt one hcbe% o-wnistream and ' ice %ersa).



(2 The positions of the primary and secondary separation points are calculated

through the use of one of the following methods:

(a) Pohlhausen's Method: The velocity is calculated at one degree intervals

along the cylinder, starting at the stagnation points. Then the positions

of the separation points are determined through the use of Pohlhausen's

technique (for details see e.g., Schlichting 1932). When the vortices

returning to the cylinder cause irregularities in the velocity distribution

along the cylinder (because of the disproportionately large influence of'

some of the point vortices), the Pohlhausen's method fails to predict a

separation point. Under these circumstances, the maximum velocity

criterion is used.

(b Maximum Velocity Criterion: The velocity distribution is calculated

along the cylinder and the position of the maximum absolute velocity on

each side of the cylinder is determined. Then the separation points are

located at points where the tangential velocity is a certain time-averaged

fraction of the maximum velocity. Further details of this fraction will be

discussed later.

c) Absolute Maximum Pressure Criterion: When the difference between

the primary separation angles calculated at times tn and tn 1 . either

through the use of Pohlhausen's technique or through the use of' the

maximum velocity criterion, is larger than 8 degrees. then the posi:ions

of' the maximum absolute pressure are used to calculate the separation

points. For this purpose, all velocity peaks are calculated through the

use of the tangential velocity distribution. Then the maximum velocity

at which the maximum absolute pressure occurs is determined. Then the

posimons of the separation points are calculated using the maximum

velocity criterion. In other words, the pressure distribution is used to

locate the position of* the maximum velocity nearest the true separa:ion

point.

The foregoing. relatively time consunung, steps could have been etmntted

!hrough the use of a suitable numerical filter so as to remove the se~ondan

'li.ttions imposed on the '. clo.itV distribution by- a few point vortices in the

,:,imnt of the chlinder. It 'as realied that the use o1 such a filter %I1l net

O r-,% consume more ompuer time but will also introduce uncertainties into

the LaLulatuens. I hus. its use was disregarded.



(3) The velocity L is calculated at each separation point and the ratio Umax is

determined. Then the cumulative average of this ratio is calculated for use in

connection with the maximum velocity criterion to determine the position of

the separation points whenever the Pohlhausen criterion fails.

(4) The strength of the primary nascent vortex is calculated from,

rp = (0.5 I Us - UScs) .At (1.4)

where L'scO s accounts for the motion of the separation point relative to the

flow velocity prevailing at the separation point. The strength of the secondary

vortex is calculated from.

ro,= 0.5 ;Us! Us.At (1.5)

In other words. the effect of the relative motion of the secondary separation

point on r. is ignored.

(5) The nascent vortices are placed at a distance c along the radial lines passing

through the separation points. i.e., at zn = (I + c) exp(i Os). The value of c

which satisfies the Kutta condition is given by (see e.g., Sarpkaya & Shoaff
lq'9)

n 2 - 1 (1.6)
I-(Fo 2 itL)

16) The velocity at any point r - r* is calculated using the exact solution of the

Navier-Stokes equations for a single rectilinear viscous vortex (Lamb 1932 .

i.e.. -u-iv=(r 27tr I -exp -r2 4Vt] e-i and at any point r > r* using the

point vortex relation (-u - iV = dw dz). The radius r is measured From the

center of the vortex and 8 is taken plus in the CCW direction from the x a\is.

The core radius r* at which the tangential velocity is maximum is given by

r'! I. 26 vt) where t is the age of' the vortex since its inception. Then the

vortices are connected through the use of a simple Eulerian scheme for a time

intcrva' At = .125 LIT
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(7) The vortices which come closer than a distance of 0.05c to the cylinder surface

as well as those which have a strength smaller than 0.005 are removed from

the field.

(S) Oppositely signed vortices are combined when their separation distance is less
than 0. 1. Furthermore, the secondary vortices are combined at suitable

intervals with the primary vortices to reduce the number of the vortices and

hence the computation time.

(9) The pressure and tangential velocity distributions and the force acting on the

cylinder (both through the integration of pressure and the rate of change of

impulse. given by Eq. (1.3)) are calculated.

(10) At the end of the foregoing calculations, plots of the vortex positions,

tangential velocity, total pressure, and stagnation and separation points are

produced.

Two additional details of the model need to be described: The introduction of

asymmetry and the circulation dissipation. Any flow started impulsively from rest

remains symmetrical (at least in its numerical simulations) if not disturbed for a short

time period at or near the beginning of its inception. Sarpkaya and Shoaff(1979) have

investigated the methods of asymmetry introduction and found that the displacement

of th.. vortices in one shear layer for a short time interval is much more suitable than

iany of the methods previously used. In the present calculations, a similar method was

used. The only diffierence was that asyrmmetrv was introduced during roughly the first

quarter cycle of flow (0.1 < t T < 0.3) in order to allow the asymmetry to take effect in a

reasonable time period.

The previous investigations by Sarpkaya & Shoat" (1979) and others (e.g.,

Kiva & Arie 1977) have shown that the incorporation of dissipation into a discrete

vortex model resulted in a reduction of lift and drag force magnitudes. but did not

signi icantty affect the flow kinematics. In the present work. sample calculations with

or without dissipation have shown also that the results differ only in the magnitude of

the force coefficients and that the kinematics of the flow is not affected by dissipation.

It 1s in view of this fact that in the results presented herein it was decided to avoid a

relatively subjective dissipation mechanism.

.1. Discussion of Results

The numerical calculations were carried out for a Keulegan-Carpenter number

of K = 10. This value of K was chosen primarily because of the fact that some of the

I2



most important phenomena take place in the range 8 < K < 15 (Sarpkaya 1985; Bearman

1985: Williamson 1985). The most important of these phenomena is the occurrence of

a transverse half Karman vortex street on one side of the cylinder.

A series of flow visualization experiments at K = 10 was conducted in a water

table. Figures 1.1 and 1.2 show a time sequence from a representative run. In these

experiments the cylinder (D = 1.5 inches) was oscillated in the water table using a

period of T = 3 seconds (Re = 12.800 and Re, K = 0 = 1280). The end of the

plexiglass cylinder was within 1 16 inch of the bottom of the water table, so that the

end effects were minimal. It can be seen that the vortex shedding is indeed on the

same side (i.e.. left) of the cylinder. The numerical simulation of this phenomenon

through the use of the discrete vortex model became a challenge to numerous workers

(Sawaragi & Nakamura 1979; Ikeda & Himeno 1981; Stansby 1977, 1979, 1981; and

Stansbv & Dixon 1982, 1983). However, none of these investigators has been able to

simulate the half Karman vortex street for a number of reasons described in the

Introduction. The present simulation has removed the shortcomings of the previous

analyses, discovered physically and theoretically realistic methods to deal with the

separation points, eliminated the ad-hoc assumptions, and produced the results

presented herein.

Figures 1.3 through 1.7 show, at times T* = tT = 0.2, 0.4875, 0.6063,

0.7625. and 0.8625 the position of the discrete vortices, the tangential velocity

distribution and the total pressure distribution. The arrow in each circle shows the

direction and the magnitude of the ambient velocity. The vortices of opposite

circulation are shown with different symbols. These figures will be used to familiarize

the reader with the essential elements of the analysis. Subsequently, the evolution of

the :ransverse vortex street, characteristics of the shear layers, and the normalized drag

and iift forces will be presented.

As the ambient velocity starts from rest and nears its maximum value (Fig.

1.3). the vortices grow nearly symmetrically on the downstream side of the cylinder,

reniniscent of an impulsively started flow about a cylinder. This is a consequence of

the spiralling of the primary shear layers (SL-l and SL-2), emanating from the primary

separation points (SP-I and SP-2). The primary vortices give rise to secondary

boundary layers on the downstream side of the cylinder. These, in turn. separate and

give rise to two additional shear layers (called the secondary shear layers, denoted by

SL-3 and SL-4). As time increases and the ambient velocity decreases (Fig. 1.4), the

23



Figure 1. 1 Time sequence from flow visualization experiments (0. 12 < T* < 1 .00).
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Figure 1.2 Time sequence from flow visualization experiments (1. 13 < T* < 1.75).
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first vortex sheds from the upper right hand side of the cylinder. This leads to the

rapid growth of the vortex in the lower right hand side. The tangential velocity around

the cylinder is now primarily due to that induced by the vortices. The spikes in the

velocity and pressure distributions are a consequence of the disproportionately large

influence of a few vortices in the vicinity of the cylinder. They are most prevalent at

times of" ver" small ambient velocity.

For T* > 0.5. the ambient flow reverses its direction, the flow separates on

the left side of the cylinder, and the previously shed vortices are convected towards left

(Figs. 1.5 and 1.6) partly due to the ambient flow and partly due to the mutual

induction of" all the vortices and their images. The reversal of the flow has two major

consequences. First, the convection of the previously shed vortex over the shoulder of

the cylinder precipitates earlier separation and establishes, by its sense of rotation, a

preferred position for the next dominant vortex. Second, the reversal of flow gives rise

to additional primary and secondary separation points (Fig. 1.6). However, at a given

time there are at most four shear layers. i.e.. some of the separation points disappear

and some new ones come into existence as the flow reverses. Subsequently, the

vortical structure at the upper left side of the cylinder moves further downstream and

the vortex on the lower left side of the cylinder (Fig. 1.7) grows rapidly (in a manner

similar to that shown in Fig. 1.4). It begins to move towards the top of the cylinder,

partly due to the mutual induction velocity of the aforementioned vortical structure

and partly due to that of its image. The events just described more or less repeat

themselves in the subsequent cycles (see Figs. A.I through A.17 in Appendix A). NM ore

or less. because no two cycles can be expected to be exactly alike due to the ever

increasing number of vortices or, in other words, due to the transient nature of the
flow (for an experimental confirmation of this fact see Sarpkaya 1986). Many more

cycles of calculations will have to be carried out in order to reach a quasi-periodic

state. I lowever. this is nearly impossible and hardly necessary, partly because of the

ccmpu:er-time limitations and partly because the calculations over a period of three

cycles are more than sufficient to delineate the fundamental characteristics of the flow.
The reason for the latter is provided by the mechanism of vortex shedding during each

hai" cvcle of flow. As noted in the course of the discussion of Figs. 1.3 through 1.7,

the flow in each half cycle behaves as if it started more or less anew. the single

convected vortex over the shoulder of the cylinder precipitating earlier separation and

dictating th-e side from which the next dominant vortex is to be shed. In numerical

26
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Figure 1.3 Position of vortices, velocity and pressure distributions at T* =0.200.
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Figure 1.4 Position of vortices, velocity and pressure distributions at T* =0.48 75.
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Figure 1.5 Position of vortices, velocity and pressure distributions at T* =0.6063.
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Figure 1.6 Position of vortices, velocity and pressure distributions at T* =0. 7625.
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Figure 1.7 Position of vortices, velocity and pressure distributions at T* .8615.
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calculations the vortices do not dissipate and. therefore, begin to cover the entire flow

field. The real vortices decay rap:dly under the influence of viscosity (no vortex in the

Lir f'eid survives more than a few cycles). The purpose of the numerical calculations

wa., net to simulate the ef'ects of viscosity but rather to show that the beha, ,or of flow

,e.g.. the evolution of the transverse vortex street) is primarily an inviSLid phenomenon.

dpendent on the relative amplitude of the flow or the Keulegan-Carpenter number.

The results shox that the effect of viscosity is important in bringing about the

separalion and in decaying the vortices but not in bringing about the particular vortical

structure.

The vortex motion about the cylinder is better illustrated through the use of

the vector plots of" the velocity field. Figures 1.8 through 1.20 show the velocity field

at suitable time intervals over one and one-half cycles, starting at !* = 0.5. At the

end of the first half' cycle (Fig. I.S). two large vortices are separated by a strong current

between them. As the flow reverses (Fig. 1.9) and the ambient velocity reaches a value

of i = U"0", the vortex adjacent to the cylinder splits into two unequal parts as it

n-oves to the left. partly over the top and partly over the bottom of the cliinder. The

% , rte\ to the right of :he current in Fig. 1.8 is simply convected towards the left of the

c :,nder.- At T* = 0.C5 ( H = .the vortices convected over the top of the cylinder

z:e r.e to earlier separation on the upper left side of the cylinder. Furthernore. the

new vortex growing on the lower left side of' the cylinder is pulled towards the top of

.te cx:.nder. Figures 1.11 ('l = 0.'()") and 1.12 (L = 0) show the development of

tWo L:re %ortices. again separated by a strong current (compare Figs. L.S and 1.12).

1ure !.13 , L = ().-O-) shows that the vortex adjacent to the left side ofthe cy:linder

remains nearly intact and is convected towards right over the top of the cylinder.

I '"ure% 1.1-4 " = 1.25, U = I) and 1.1-1 (T' = 1.3-5, Li = O.71C). show that the

-aratirL ot flow on the right side of the cylinder gives rise to new vortices, in a

n nner sinmlar to that shown in Fig. 1.10. Subsequently, this leads to t'vo large

.r:eS I Fig. I. I). separated by a current as in Fig. I.S. Evidently, I igs. I.S and 1.16

expected to be identical in an ever evolving unsteady flow. Nevertheless, the

e,,e:";::l features of the two flows (separated by a full cycle) are quite con;parable.

l!-e ,condar.- 'ortical structures seen in Fig. 1.16 are a consequence of' the invisLid

ra:,.*rL of "!-.e c:a,,ulations. As noted earlier. they do not survi',e the effects of vlscoSlt\

t:,: rbWen:,e in phival experiment,. I igures I. I- through 1.201 show Zhe eoluton

I [heC. ' r an ,iddit:onl half cL'.lC. (-learl., the flow pattern repeat, i %~ckf .ith

. r dill cren cIC 11rnpare I "s. I.S and 1.16 and I ics. 1.12 and 1.2m.

- 'V i~ ' v :..;-,' : ". ,'



It is evident from the foregoing that the reason for the occurren(c o! the

transverse vortex street in the range S , K < 13 icorrespondling to the ampiitude-to-

~.etrratios of' A D = 1.27 to 2.) is. as expected, the formation of' twot ai'rnrnetr,_

:ccs duaring a gien hallf CclCA and the efi' ct of' the returnine %orices or- thc

orrnat ion of the new vortices.

fIie vortical structures and the transserse current shown in I iz-s I S througlh

1 20 cannot be directly compared at an arbitrarx% time P with those hOij~n in Fig. 1AI
-n:e -he streaklines of an oscillating flow about a stationar% cylinder arc not the same

".s those of an oscillating! cylinder in a fluid otherwise at rest. \eetheless. a

,ornparison of Figs. LID and IL with Figs. 1.12 arid 1.21) (at times of zero ambient

%e !oc:t, or zero cylinder elocit%) has shown that thle radial and the angular nositioris

ot the vart,,ces are predicted with surprising accuracy. In Figs. l-ID and' I 11. the

orte\ to the left of the current is located at r c = 5.-45 and 0 (tram the N ertica. I

le "rees. The position of' the same % ortex in Figs. 1.12 and 1.20 is r C = 5.42 and 0
"rom the x a.,~ I 15 degrees. It should be noted in passing that the side f-romr which

tlie JonAnt %vortex sheds may become swit~ied b% the action of' random disturbances

.:i the :low or by -;topping and restarting the flow. In the numerical cacuadt:onls thle

uirc: ,,on of the transverse flow depends on the side at which the as~nimetr' is;

in'ro,'ucd into the flow. Had the asymmnetry been introduced on the lower side of' the

hne.the trans' erse f'low would have occurred on the lower side of' the c% hinder.

Th,-e creat:on. sheddine and backward convection of-the dominiant \ ortex in a

ow fl~.where there are only a few vortices. strongl% affect the pressure distribution

at-cut the c-xl1nder. Thus. it would have been desirable to compare thle measured and

predicted pressure distributions. However, no such data is available at K =10 or at

_n% other K value. Wilson 0983) measured the differential pressure between two

Uirer~2vopposed points on ac~linder and provided differential pressure

,,strbutnons at suitable times. Calculations have been perf rmed %%itli the numerical

:,!oL to obtain similar differential pressure data. Figure 1.21 shows two Lcmparisons

.the measured and calculated differer'fial pressure distributions. lI.eni though the

inar~~uesdiffer some%%hat, the general shape of the two Cp cur'es; are remiarkab!'

':ia.The reason for the difference in their macnitude 1 dircty relat-od to the

oCen: -i hL ,ort ces. Previous 'ivestications (see e.Lg.. Sarpka~a 11) ha'~e showni

t: he Laicuiated vortex strenipths arc somewhat larper than those obtained
cer .nintaiv An add,.ticnal loss of Norticit-v could! have beenitrde io:e



model in a manner sinular to that used bx Sarpkaya and ShoaD19I9i in order to bring

the strengths of the shed vortices, and thereby the differential pressure distrihutions.

nto ,.oser agreernent with those obtained experimentall. However, it was decided to

a'.1J a relatIe: ,ubjectie dissipation RIechansm. It appears that the kinematics of

he t,,.x does not strmngly depend on the strength of the shed vortices. [his is in

.or ,.vth the precious apphcations of the discrete vortex model (Sarpka'a &
S:Ioaf! 

ri'l 
)

I :gures 1.22 and 1.21 show the calculated drag and lift coefficients as a

c::n'e. lhe eff1ect of the passage of a vertex over the shoulder of the

,. , exi ,-ited in !hese figures in two wavs. First. it brings sharp changes in Gd

• e tr ma\i'.mun Sei-ond, it gives rise to a net trans.erse force on the cIinder.

I .,.t..,. the h:t !orCe is very sensitive to the flow asynimetry and depends strongly cn

th-e proxm.t. .t0 : linder of the vertex passing over the cylinder. The calculations

w1 h'a'.e " c ,iarric out oser many more c'cies in orcer to obtain a root-mean-

",0-,;7' ,, J! the lft coelCkient for comparison with that obtained experimentaliy.

I:.., ha, ;or keen d me in the present study for the reasons cited earlier.

A\ compir:,cn ft the measured and calculated drag force is shown in I . 1.24

1 he ,.reemerlit :s not as good as expected primarily due to the fact that the strength of

'he lculated 'or'ies is somewhat larger than those encountered in the experiments.

\ . to III per,.ent decrease in circulation could have brought the measured and

S,..:. ed iores ino much closer aereement. As noted earlier, however, th% Nva, not

•I " .:p e ". presert :rnvestzigation.

1- he a:'entuon will now be directed to the motion of the stagnation and

,c, .r ior. pcin, and to the vorticitv fed Into the shear layers. Figures 1. 25 and 1.2(,

, !hcv the micion of the upstream iprim-,.ri and downstream IseCLondarn. ,ta-nat:on

F .nr'. r~cic,vei%. lere upstream means the side of the cylinder I",ing the ambienr

-'. .v I "ic pr:rm.- arid secondar stagnation points are approximate!y. I W d:creos

part. .i, .~tu, he expected. For example. at 4' = I).5 the primary stagnatton pc:nt

near.', .ero and the seLundar', stanation point jump, to approx\ma:cl\ I')

S:crc, Ihe srurious osc:llations :n I j. 1.25 and 1_26. partiularl in the -t

:t.e ,._ '.ir. ,tgnation point. are due to tle diproportionatel\ large n',Lten.c othe

"-ox: , to ":e .i. der of a few poit,: '.or!,.:es.

I:;.:c, 1 2 r.d I.2S ,hov te otion of the rrniarv and ,c.ondar

Scr , rlt:. r po :, ,,cc :i6,o I ig. I A,,de from :he ,puriou, ,econdar, ,

% 6
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(due to the reasons cited earlier). Fig. 1.27 shows in general that the primary separation

angle increases rapidly as the velocity of the ambient flow increases from zero (e.g.. at

T"= 1. see Fig. 1. 12) to an average value of about 110 degrees at T* = 1.5 (see FiZ.

I. loi. [lien ;t decreases rapidly to zero as T* approaches 2 (see Fig. 1.20). A
Lamnparison of rigs. 1.27 and 1.28 shows that there is a phase shift of' one hialf of a
c'~cie be-xeen the positions of the primary and secondary separation points, as would

he expectedl. There is, at present, no separation point data for comparison with those
ch-ailied experimnentally.

FLnallv. Fg-. 1.29 shows the vorticitv fed inoeach shear layer. The first and
SCxond shear lavers have relatively large and oppo sitely- signed vorticity. They are not
eac~h other s mirror image due to the asymmetn- of the flow. The vorticity. in the third
and f*ourth shear la-.ers is about 25 to 30 percent of that in the primary shear layers.
Clearly, the vortIcity "ed into the primary shear layers (particularly~ that fed into the

!hrst shear laver) has a sinusoidal character to it. This is because the vorticitv is related
to the timbient flow velocity C sinaw t)through the velocity Uat the separation point.

Thle flow variables such as vorticjtv cannot be measured directly. Thus, the accuracy,
4f as miagnitudec and time-dependence can only be inferred indirectly through the

comparison of the rmeasured and calculated forces and pressure distributions. It

arlpears. on the basis of- such comparisons that, the calculated vorticity Is about 10

rer~ent larger than that prevailing in physical experiments. The reasons for this are
ptvthe diffusion of vorticity by viscosity and turbulence arnd partly the three-

n...nS:o)n.1! nature of the ph, sica' experiments.

D. CONCLUDING REMIARKS ON OSCILLATING FLOW ABOUT
C'i LENDERS

Pie d!:screte vortex model used in the present investigation avoids many of' the

nro~:e;cm a-sociated with the Eulerian finite difference and finite element methods but

Is U:,clt :o somec of its own. Chief amonLg these is the excessive computer time needed

a-,!t.e :a:_-u~a::on of the convection of '.ortices and the diflIcUlt' to account for the

CA.C 4 :scLit and turbulenC.

In *he present simulation the discretc %ortex model has been combined with the

oun e_~r calc_-ulat ions and the posiis of' the separation and stagnation point',

haxe h :en L_..ui.ed for a Keulegan-(iarrenter number of' K = 0' The results have

~ ~cL~dthle forrmat:on ot a haif" Karrvian vortex street in thle transverse

>c~uo I 1he cKatdPOkItICons C" 'he NOrIticeS -xere found to be in good agreement

I'-3



with those obtained experimentally. The measured and calculated drag force and the

differential pressure distributions showed reasonably good agreement. The measured

in-line force was somewhat smaller primarily due to the fact that the vorticity fed into
the shear Iayers has not been artificially reduced to bring the measured and calculated

forces into closer agreement. The results have also shown that the effect of' the

backward convection of a large )rtex over one side of the cylinder is indeed very

pronounced on all the measured and computed characteristics of the flow. This is one

o" the most important reasons as to why the Morison's equation (see e.g., Sarpkaya &

lsaacson 19S1) fails to represent the in-line force acting on the cylinder with reasonable

accuracy, particularly in the range 8 < K < 13.
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II. DISCRETE VORTEX ANALYSIS OF UNSTEADY FLOW
ABOUT CAMBERED PLATES

A. INTRODUCTION

The determination of the deployment sequence of an axisymmetric porous

parachute and the unsteady aerodynamic loads acting on it present a very complex

coupled problem. The development of an analytical or numerical model which takes

into account the effects of porosity, gaps, and variable opening schemes would allow

numerical experiments on a large class of parachutes, reduce the number of expensive
field tests to a few judiciously selected ones, and enable the designer to calculate the

time history of the fall of the parachute and the strength required to survive the
aerodynamic loads. However, the development of such a model is hampered by a

number of difficulties.

The previous models for parachute loads are based by and large on empirical

assumptions (see e.g., Heinrich and Saari 1987; Mcwey 1972). They rely on the

observation that families of parachutes open in a characteristic length and seem to

have aerodynamic properties that relate well to the projected area of the parachute.

The apparent mass is assumed to be a function of the projected area only and is not a

function of the prevailing flow characteristics. The vortex sheet analysis was used by

Klimas (1977) to derive the acceleration-independent apparent mass coefficient for

arbitrary-shaped axisymmetric surfaces. Muramoto and Garrard (1984) used a

continuous-source model to predict the steady-state drag of ribbon parachutes. The

analyses did not, however, deal with the evolution of the unsteady wake and its

interaction with the canopy.

It is in view of the foregoing that a fundamental study of the separated time-

dependent flow about two-dimensional rigid cambered plates was undertaken. Clearly,

the flow about a rigid cambered plate is considerably simpler than that about a porous.

axisymmetric, and flexible parachute and the results, regardless of the degree of their

agreement with corresponding experiments, may not have direct relevance to the

practical problem under consideration. But the object of this investigation was the

understanding of the evolution of the wake under controlled conditions rather than to

provide a design tool. It is hoped that an investigation of this type will reveal the

underlying physics of the phenomenon (particularly that of the parachute collapse),
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help to interpret the full-scale results and will provide inspiration for the development
of more general vortex models with which the dynamics of axisymmetric, porous, and
flexible parachute canopies can be investigated. Efforts directed towards the
development of a general numerical model, driven by the ever-present pressures of
practical considerations, are deemed somewhat premature. Such efforts will have to
face not only the problem itself but also the deficiencies of the vortex models and
attempt to address to both of them simultaneously. The model presented herein

removes the ambiguities associated with the use of the discrete vortex model and
provides results which are in excellent agreement with those obtained experimentally.

4
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III. ANALYSIS

A. TRANSFORMATIONS AND THE COMPLEX VELOCITY POTENTIAL
The calculation of the velocity of any one of the vortices and the force acting on

the body requires a conformal transformation (in which the camber becomes a circle),
a complex-velocity potential representing the vortices, their images, and the two-
dimensional irrotational flow around the body, and the use of the generalized Blasius

theorem.

The flow in the circle plane may be transformed to that about a cambered plate
through the use of two successive transformations, one from plane to the ° plane
and the other from the ° plan to the z plane. These are given by (see Fig. 3.1)

a. b. RIP

ppe

-C." d. I
2ib ].1 Cdp

zo

Figure 3.1 Circle and physical planes.
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b
2

z { ° - , and ;= ;+m (3.1)

Combining the two, one has a direct transformation from the plane to the z

plane as

b2

z = + m - (3.2)
;-ni

It is easy to show that the camber in the z plane is a circular arc.

The y-axis in the z plane passes through the tips of the camber. It is

advantageous to locate the origin of the coordinate axes at the geometric center of the

camber. i.e., at the center of the circle part of which represents the camber. This is

easily accomplished by shifting the origin of the coordinate axes by

2m 2 - 33zo  ni(3.3)

where z. is the x coordinate of the origin of the circle in the z plan. Thus, one has

~b 2

z =;+m + z withz' z (3.4)+ ni 0

which transforms the circle in Fie. 3.a to the physical plane in Fig. 3.1d. Table I

summarizes the relationship between m, z, the included angle of the camber, b, and

the radius of the camber.

TABLE I

SUMMARY OF THE PARAMETRIC RELATIONSHIP

m z- 2a b R= I m

cos60 = .5 -1 120 .866 2
cos45 = .707 0. ISO .707 /2
cos30J = .866 i /'3 240 .5 2 43
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The complex potential function W in the circle plane (see Fig. 3.1a) which
describes a uniform flow U (assumed to be time-dependent) with a doublet at the
origin to simulate the cylinder, rkq clockwise-rotating vortices (called q-vortices), rkp
counter-clockwise rotating vortices (called p-vortices), and the images of all the p-and
q-vortices in the circle plane may be written as

w = - U ( + + -2 rL nP - - _ -
2

21 27r ';Op

m iF c2  ir
+ LIPpLn(Y Ln( - _,7_) - Ln(; - Oq)

17Ci-P~( - ;kp) _ 21r 2t

k=r k kp

ir c2  m i m irk c2
+ _rQnq 2( - irkq Ln( - +E "kqq Ln(q -- )c (3.5)21 n Oq k= 12  

- l'  kq

in which rkp and kp represent respectively the strength and location of the k-th p-
vortex, rkq and kq the strength and location of the k-th q-vortex, and c the radius of

the cylinder, an overbar indicates a complex conjugate. The need for the separate
identification of the p-and q-vortices and for the singling out of one of the vortices in
each shear layer (namely r0p and ro. nascent vortices) will become apparent later.

B. COMPLEX VELOCITIES OF VORTICES

The convection of the vortices and the calculation of the forces acting on the
body require the evaluation of the velocities at the vortex centers. For the velocities in
the circle plane this reduces to subtracting from Eq. (3.5) the complex potential
corresponding to the vortex for which the velocity components are to be determined
and evaluating the derivative of the remaining terms at ; = ;k' To determine the
velocities in the physical plane, however, one has to subtract (ik 2n) Ln(z - zk) from
Eq. (3.5) or, in terms of , the terms (see e.g., Sarpkava 1967, 1975)

irk Ln ( -
i r k Ln + (3.6)k) +i (4 + 3 )(Ck + m)

63



It should be noted that the first term in Eq. (3.6) is the complex function

corresponding to the k-th vortex in the ; plane. The second term appears merely as a

consequence of the transformation used.

The above procedure may be generalized as follows. Consider the potential

function for a single vortex in the physical plane and ignore, for the time being, the

multiplier in front of the logarithmic term (i.e., irk,22n). Then one has

Ln(z - z,) = Ln[ f() - Rv] with z = f() (3.7)

equation (3.7) may be written as

Ln (z - zv) = Ln( - ) + Ln - V) (3.8)

Evidently, the first term on the right hand side of Eq. (3.8) represents the vortex in the
circle plane. Let us now examine the derivative of the second term with respect to z.

One has,

d W Id ) ___-- _ ' (3.9)

dz [d \~ -;V)]f)I;v dz

where dzd; = f'(;). In the neighborhood of;v the function f(;) may be expanded as,

;v)f2(v) +  2 (,;v) + ... (3.10)

Thus, one has

dz (;) f(3.11)

or
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dz 2f 2 (v)

Thus, the complex velocity in the physikal plane reduces to

d ir i r f%,.)
X V, = d;7 W( t) - - Ln (t - ,) 1 3.13)

in wAhich for a p-vortex

b 2
1 M(3.14)

"IkpA-r)

and

S 2(b 2

kp 1 + Mn)3

(Ikp+  )

- p b2C kv + r) (3.16)
2n [kp+ m )2 + b 2 ]2

This result could have been deduced directly from Eq. (3.6). However, the
generalization of the method enables one to apply Eq. (3.13) to any vortex for any

transformation between the circle and the physical plane.

C. KUTA CONDITION

The fact that the flow separates tangentially with a finite velocity at the edges of

the plate (Kutta condition) may be expressed by requiring

dw
- = 0 at = -m tib (3.17)dc.
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Thus, inserting Eq. (3.5) in Eq. (3.17) one has

+ it" 1 1 s)- !..i( lm• :r)
"+2 -- LOP - - c 2;OP ;Oq

ir Il

kap

;'kp ;kq

C
2

-U (I- u7) =0. (3.18)

Equation (3.18) may be decomposed into two parts as

+ _o.12 -l t r Oq

2n cr 27r
2- t - 'Op 2 ) q)

+ (-u o + ivo ) = 0. (3.19)

where the terms containing the strength of the nascent vortices represent the velocity

induced at the tip of the camber by the nascent vortices and the term in parenthesis the

velocity at the tip due to all other vortices (and their images), the doublet at the center

of the circle in the ; plane and the ambient velocity.

Equation (3.19) represents two coupled equations for the strengths and positions

of the nascent vortices. Thus, the solution of the said quantities does, in general,

require an iteration. However, this iteration may be avoided by noting that the

velocity induced by a nascent vortex at the opposite tip is very small and certainly

negligible. Thus, Eq. (3.19) for one of the nascent vortices may be reduced to

i 0q 2+i 0 (3.20),TtO . t lo - -U4 --

-Oq
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A similar expression may be written for the other nascent vortex. The use of the Kutta

condition, as expressed by Eq. (3.20), will be further explained following the discussion

of the tip velocity. It suffices to note that all nascent vortices satisfying the Kutta

condition do not yield either the same tip velocity or the same velocity distribution in

the neighborhood of the tip. There are, in fact, certain preferred positions for the

nascent vortices which yield physically realistic velocity distributions near the tips of

the cambered plate. These nascent vortex positions will be discussed later.

D. TIP VELOCITY

According to the Kutta condition the tangential velocity at the tip is finite. The

purpose of the following is to determine this finite velocity. It may be determined

either through the use of l'Hopital's rule or through the use of a more general

expression which is valid for all other transformations.

The velocity at the tip is given by

i dW dW dd = dW d; at zt =z. ±2ib (3.21)
dz ddz

For an arbitrary point z, Eq. (3.4) yields,

d; I vIWb
(3.22)

dz 2 2 f zt

In general. one may write Eq. (3.22) as

. d 1 (z- Zo)
(z -- -- ±(3.23)

dz 2 2,/(z - zo)" + 4b"

or multiplying both sides with /(z - zt), one has

R(z) = (z- z)1/2
dz

I (z -)P 2 - (z - zo) (3.24)
2 -2 2,/z -( z 2ib)
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Thus, as zF-z o  2ib, one has

(zt)  1 ./i (3.25)

Sor

d -_ 1;i - - 2f2(z4) (3.26)

dz 2, (z-z t) 1-

Expanding dW dC in the neighborhood of C one has

dW
-= W t +  (3.27)

Combining Eqs. (3.26) and (3.27) one finally has

" .dW /  d dW
l2 f 2(zt) (.2S)

dz I : _
z=zt

Noting that for the case under consideration f2 (z,) = ib,4, one has

dWf d2W ibjj ~ 2 (3.29)
1% z zt

Equation (3.29) yields the desired finite tip velocities. It is easy to show that it may be

obtained directly from Eq. (3.21) through the use of l'l-[opital's rule.

E. TIME DEPENDENT-FORCES

The force acting on the body in the physical plane may be calculated either

through the use of the pressure distribution or through the use of the rate of change of

impu!se.

m~6



Bernoulli's equation for unsteady flow is given by

_3 P_ V I2  P2  V 2  2 OV

-- - - + ) - -- ds = f(t) (3.30)
p 2 p 2 - t

where the indices indicate two points on the body in the physical plane. Since there is

no pressure drop across the shear layer and since the integral term in Eq. (3.30) is zero
at the tip (i.e., ds = 0), one has

f W)- Vt 12  Vt22 (3.31)
2 2

where Vt1 and Vt2 represent the tangental velocities on the upstream and downstream
faces of the tip. It is important to note that f (t) in Eq. (3.31) is also the time rate of
change of circulation, i.e., the rate at which vorticity is shed into the wake fi n the tip

of the cambered plate.
The normalized form of Bernoulli's equation between any two poin ,n and n

then becomes

PM -P- Vt12 V 2
2 + V+ 2 - V 3.) V

p U 2  u 2  at m 2 ds (3.32)

The integration of the differential pressure between the upstream and downstream faces
of the camber yields the force components in the x and y directions, i.e., the drag and

lift forces.
The force acting on the body can also be calculated through the rate of change of

impulse. It is given by

m
2

F 41rpc1L (I -- 2) + [ n (zn - zn1 (3.33)
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which may be written as

F c" c m2

C d + i Lt= 2b 277--I) (-) (I

k ;k c

2b O(Lt c) Uc c (334)

in which U° is the reference velocity; C, the rate of deceleration of flow and z

i.e., the transformation given by Eq. (3.4). Equation (3.34) may also be deduced

directly from the generalized Blasius equation. It is important to note that the force

calculated from Eq. (3.34) includes the effect of the rate of change of circulation

between two successive time steps. Thus, it may be smaller or larger (depending on the

sign of F) than the force calculated through the integration of the instantaneous

differential pressure Eq. (3.32). This is because of the fact that the instantaneous

pressure depends only on the prevailing flow conditions and does not account for the

rate of change of total circulation between successive time steps. In the calculations to

follow U° and c are taken as unity for sake of simplicity.

F. METHOD OF CALCULATION

The methods used in the past in the determination of the vorticitv flux from

sharp-edged bodies may be roughly classified into two broad categories. The first of
these involves the use of variable nascent vortex positions (see e.g.. Sarpkaya 1968,

1975) and the second, the use of fixed nascent vortex positions (see e.g., Clements

1973-1975).

The method of fixed positions involves the selection of a suitable fixed point in

the flow near the separation point and the use of the velocity U. at that point to

calculate the rate at which vorticity is shed into the wake from

- U 2  (3.35

at 2 s

In this method the positions of the nascent vortices are the crucial parameters. The

previous applications of this method did not examine the effect of the position of the

nascent vortices on the velocity distribution in the neighborhood of the separation
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point. Only the distance of the fixed point to the body was varied and bracketed

between two subjective limits by comparing the calculated results with those obtained

experimentally. In this method no interaction is allowed between the shed vortices and

the amplitude of oscillation of the point or the time of appearance of the nascent

vortices. Furthermore. the time interval is chosen more or less arbitrarily (Kiya and

Arie 1977) (repeating a few calculations with a single program with only the time step

changed and also by referring to the results of the previous investigations). 'Thus. the

velocities at the outer edges of the shear layers are only indirectly related to the

strength of the nascent vortices and the fixed time interval. Evidently. the velocities in

the inner and outer edges of the shear layers, the time interval, the strength and

position of the nascent vortices, and the Kutta condition are interdependent and that

both the position of the nascent vortices and the time interval cannot be chosen

arbitrarily, even if thev are chosen judiciously on the basis of previous experience and

trial calculations.

Sarpkava (1975) used the method of variable nascent vortex positions and

determined the rate of shedding of vorticity from the relation

C F I
= - U 2(3.36)

at 2

where U is interpreted as the velocity in the shear layers calculated by using the

average of the transport velocities of the first four vortices in each shear layer. The

positions of the nascent vortices are chosen so as to satisfy the Kutta condition at the

edges of the body and thus they can move slightly with time. Thus, this method

simulates in a satisfactory manner the mechanism of' feedback from wake fluctuations

to the fluctuations in the rate of circulation. The number of disposable parameters is

reduced to a minimum and in this sense this method is superior to the method of' fixed

positions. However, the use of the average of the transport velocities of the first COur

vortices remained questionable.
It was often assumed that the vorticitv flux could not be calculated, at each time

interval, as it is applied to sharp-edged bodies, through the use of the mathematically

finite velocity occurring at the sharp edges of the body. This assumption was bascd on

the flict that the separation points are singularities of the transformation used and the

numerical procedures may not be stable.



It is on the basis of the foregoing that an original study was undertaken to

establish once and for all a method whereby the nascent vortices may be introduced

into the flow without any ambiguities. The method finally arrived at will be explained

through the use of a series of figures and velocity plots.

Figures 3.2a and 3.2b show the tip region in the circle and physical planes,

respectively. The regions A and B in Fig. 3.2a were discretized through the use of a

suitable grid and a single vortex was placed at a grid point. The strength of the vortex

was determined from the Kutta condition Eq. (3.20). Then the velocity normal to the

radial line OZ in the physical plane (Fig. 3.2b) was calculated in the vicinity of the tip

through the use of the complex velocity potential.
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0
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oo So A

0 0 
o 

0

M 0 0 00 0 o
co0 0 A a 00 

oB Oo °  0
00 080

0

00

0'

a. b.

Figure 3.2 Tip region in the circle and physical planes.

Placing :he vortex along the radial line OM (in the C plane) yields a single valued

tip vel-c :z independent of the strength and the position of the vortex and dependent

only on the plate geometry, i.e., b and 0. It is easy to show that the velocity at the

edge of the plate reduces to q, = ±(ib 2) e - 3 i8 s - -e-i6(s). For the case of a

120-degree camber this gives an absolute value of 0.433 with a velocity direction

opposite to that expected at the edge of the plate ( Fig. 3.3).
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Placing the nascent vortex to the right of the radial line O.I in the circle plane

(or along the circular arc in the physical plane) always requires a stronger vortex to

satist the Kutta condition and results in a tip velocity which is unrealistic both in

magnitude and direction (Fig. 3.4).

Placing :he nascent vortex along the radial line OZ in the physical plane or

outside the region A shifts the point of maximum velocity away from the edge of the

plate (tow:rds the downstream side). This, in turn, results in a leakage of fluid through
the shear iaver and requires a stronger vortex to satisfy the Kutta condition tFig. 3.5.

The entire region A enclosed by the transformation of the radial line OZ in the

physical plane and the radiai line OM in the ' plane. is examined to determine the

most appropriate positions of the nascent vortex. Figures 3.6 through 3.S Show a

.hree-d inensional plot and the contour lines of r, U(max) L(tip). and ULtip) as a

function of the radial positions R and the angular positions RO for those locations of

the nascent vortex for which r< I. U(max) L(tip)< 6. and U(tip)< 6.

Figures 3.9 through 3.11 show three representative velocity profiles !or three

different positions of' the nascent vortices in the region defined above. The most

stnking feature of these figures is that the maximum velocity near the tip can exceed

considerablv and unrealisticallv the velocity at the tip and that only for certa:n '.ortex

postions does the maximum velocity (the velocity on the inner face of the .a~m;'er at

the tip) approaches smoothly the finite tip velocity. These calculations have sh'.n

::a: here is. in fact, a finite region in which the nascent vortices may be introdu~J i

order zo produce a tip velocity which is nearly equal to the maximum velo(it', in the

v:car':t, of the t:p. Clearly. ;t is only for unique combinations of the radiai Jitan,.e R

an_ the an2ular posit:on RO that the said velocity ratio is equal to unit,.

4
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Figure 3.6 shows the required vortex strength as a function of a R and RO. Even

though these calculations have been carried out with a single vortex, the subsequent
cacuations with larger number of vortices have shown that the relationship between

the maximum velocity and the tip velocity remains practically invariant as long as the
nascent vortices are always introduced at the fixed point which produces
LUmax L:ip - I for the single vortex. The reason for this is that the said velocity

ratio is pr:marily dictated by the nascent vortex and the complex potential used in Eq.
i I.2N . to calculate the tip velocity, encompasses the effect of all the vortices in the flow

tieMd. In other words, it does not make any difference whether the velocity qo.i.e.. u')

- iv. in Eq. (3.20) is produced by the ambient velocity or by a large number of
vortices in the field.

The fact emerging from the foregoing analysis is that the nascent vortex cannot
be placed arbitrarily (e.g.. along the radial line in the circle plane or along the extension
of the camber in the physical plane). Otherwise, the velocity distribution in the vicinity

cf -he tip becomes unrealistic and unrepresentative of the evolution of the shear layers

on either side of the camber. Furthermore. one is then forced to make arbitrary
assumptions regarding the strength and the convection of the nascent vortices.

The foregoing extensive analysis led to the conclusion that the nascent vortices

should be introduced at r = 1.0925 and O=0 - 2.080, for the case of the 120-decree

camber. To be more precise, the two nascent vortices are placed at the angular

posi:ns 0= - 2.0, and Oq = Os', 2.08. during the period for which V:1 - 2

0.2. For V, > V1, the positions of the two nascent vortices are switched to their

correspon.ing images with respect to the radial line OM, i.e., they are placed at 0 pi =

0 .- 2OS and 0 . = 0s2-2.08. The evolution of the very early stages of the flow in

,he immediate vicinity of the tips of the camber is shown in Fig. 3.12.

In Fig. 3.12a the velocity field is a consequence of the first two nascent vortices
introduced at the points noted above. Figures 3.12b through 3.12d show the
development of the flow field and the starting tip vortex subsequent to the introduction

of the 4 th. Sth, and I Ith nascent vortex, respectively.

There is not a unique procedure for relating the rate at which vorticitv is shed
into the wake. the Kutta condition, the velocity with which the nascent vortices are

convected, and the time interval for the convection, all of which help to simulate the

experimentally observed features of the free shear layers. Fage and Johansen i192S).

through quite ingenious experiments with steady flow about various bluff bodie,. ha~e
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shown that vorticity is shed from the two sides of an axisymnetric body (a circular

cvlinder) or a sharp-edged body (a plate normal to the flow) at the same rate: that the

motion in a sheet is steady near the body, except possibly near the inner edge of the

shear layers; that fluid flows into a sheet through both edges, but at a greater rate

through the outer edge; that at each section of the sheet the velocity rises from a small

value to a well-marked maximum value (approximately V1 U = 1.-45) and then very

slowly decreases to about 1.35 within a distance of approximately y-2c. where the

breadth of the sheet reaches a value of A - c; and finally, that the velocity VI at the

outer edge of the sheet is much larger than the velocity V, at the inner edge (except

during the deceleration period of the flow) and V2 may be ignored in calculating the

vorticity flux from tF Ot = 0.5 ( V1  - ).

In the present calculation the vortex strength, the velocities on either side of the

shear layer, and the time interval are related by

r = 0.5 (v12 - v,12).At (3.37)

in which F is the strength of the nascent vortex, V1 = U(tip) and V, is the velocity at

the downstream face of the camber near the tip. The velocity V, can be calculated

correctly in a number of ways, to be described later. Suffice it to note that in general

V, is very small (for steady flow) and that the method of its calculation has ver- little

or no influence on the strength of the nascent vortex or on the time interval to be used

for a given vortex strength. The velocity V, becomes important only when the wake

begins to move towards the camber (i.e., during the period of flow deceleration.

To explain the computational details of the method let us consider a particular

time t after the start of the motion and assume t to be sufficiently large so that there

are a number of vortices in the wake. Then the appearance and convection of' the

vortices proceed as follows:

'I Determine the strength of the nascent vortices from the Kutta condition .Eq.

(3.201, in which 4- is a known fixed position for each nascent vortex

2) Place the nascent vortices at and 0q and calculate the velocity V1 at the

two edges of the plate ;

(3 Calculate V , representing the velocity at the inner boundary of the shear

layer, as the average of the velocities at three points along the radial line OZ

in the physical plane i.e., at r = 1, 1.05, and 1.1:
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(4 Calcu~ate the time interval, for each edge of tlle plate. from Eq. ( .,. sing

thie known values of r and thie velocities V1 and V, Store the average of th-e

two zi:me intervals for use in subsequent calculations:

Calculate the veoiyinduced at the center of a±ll other vortices:

0)( Cconvect the two nascent vortites with a velocity U.5 VI - V, ) for an average

t;te lnerval At (note that the vorticitv is convected with the average ect'

zli. the >car !aver). If the dis-.ancc travelled b,, a nascent vortex is not wi'thin
i).5~O0l.itis convected twice for a time interval At 2. The su -sequenr

cvections of the niascent vortices are made using the velciO~jt inLduce.d it

their center.

4 Convect ail other vortices for the same time-interval At usinLg a second. ordler

scem even by

zt At) =Z(t) + 0.5 [32(t) - 2(t -At) J.-At (3,3S)

in which 4z u -iv.

(S) Remove the vortices from the calculation whenever they conie nearer t!-an

0.05 zo the camber in the physical plane (except the First 20 vortices from the

N' tiP:

9) Coalesce the same sign vortices with a separation of less than 0.05 (in -*he

ihvsicai plane. except the first 20 vor-ices):
IQ) Ca,:culate the tangential velocities and pressures on the inner and outer "aces

of' tLe camber. Detcrnxine the drau and lit forces through the inteerazior. of

Pressure and through the use of the rate of change of impulse. Make plots of'

s uitablie variables (e.g.. velocity distribution ne-ar the tip. variation of 11ascent

v-otex circulation with time, evolution of the wake, etc.)

11) Ch-eck thie flow conditions to determine the state of the calculations:

a) if Vi - V) > 0.2 repeat the foregoing steps:
I r

b) Stcp the introduction of nascent vortices if 0 < V V, < 0. 2 and

return to step No. 5;
I'c) If V, > V1 swvitch the angular positions of the nascent vortices to their

image points. Calculate V, as the average of the three velocities, at the

upstreamn side of the tip of the caimber. at three radial locations 10) 45
0.9, and 0.S5/1 and repeat the f"oregoing steps: and
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(12) Make plots of the variations of' various flow parameters (e.g., tip veo ty,

nascent vortex circulation. evolution of the wake, force coefficients, etc.) and

termninate the run.

The foregoing steps are quite general and can be used for any camber. provided
that the optimum points of placement of the nascent vortices are deternned through a
simular analysis for the desired camber angle.
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IV. DISCUSSION OF RESULTS

A. NUMERICAL AND PHYSICAL EXPERIMENTS

[he calultio's were carried out for a time-dependent normalized velocitvygiven
by

U U t
I for T- 0 -< S.65 (4.1,

U0  c

and

L
- - 0.1- .9( -S.65) + 0.0053(T* 8.65)2  4.21

which corresponds to that encountered in a series of experiments carried out in a

vertical water tunnel. A detailed description of the equipment and procedure, is given

by Sarpkaya and lhrig (19S6) and will not be repeated here. Evidently. the calculations

can be carried out for any specified variation of the velocity. For the case under

consideration, the flow begins to decelerate at T* = 8.65 and the velocity of the

ambient flow reduces to zero at about T' = 19, (see Fig. 4.1)

The computer program provided, at times specified. the positions of all the

vortices, the rate of shedding of vorticity from the tips of the camber. the velocity

distribution on the upstream and downstream faces of the camber, the total and

differential pressure distributions, and the force coefficients.

Figures 4.2 through 4.4 show, at T* = Uot c = 4.35, the evolution of the wake.

the tangential velocities at the upstream and downstream faces of the camber, the

2 \elocity profile along the radial line passing through the tip. and the total and

difTerential pressure distributions (these plots are available at every time step but are

not reproduced here for sake of brevity ). These and other figures show that the

characteristics of the flow develop synmmetrically prior to the onset of deceleration (P

< S.65) and the differential pressure is positive everywhere (i.e., the pressure inside the

camber is larger than that outside).
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Fo::.~nethe onset of deceleration (see e-ig.. Figs. -4.5 throu-n47a:P

1').S4:. -he dfferlentiai pressure near the axis of' the camber beco-mes :cii~

nxn-::ve. The reason for this is that the deceleration of the ,'o,.k br:ncs hevo)rt:LteS

se othe caniber. The si~niflcan'ce of this result :is that had the mnodei b~een :~~

a.:- e case of' a -arachute) the central part of' the camiber .%ould haveC Oil lnsed a

2 the '-ar:-ular delceeration it Is subjected to. Fvidently t!he colai,,;

acromecr wo~dnot have -rmained symimetrical, as evidenced by fleCd Cepemets

*A.na\:;%nime tric flexlble parachute. Furthermore, it Would hlave re.quret.. 'he anax :s~s
th fow anout a flexible camiber. It is because of' this reason that i h rsn

canoer is assumed to remain r:2:d.

For- T" :arzer than about 13 (for the ambient !low under consideratioen . the
Ce. 0 11icS U c ccd a t the 1ovw-nstreani edges of the camber by the large vortices rnov:niz

c.'asand :o'.ards the camber give r-ise to o ppo sit ely- signed vorticity. This, in turn.

.eads to the rapiJ growth cf the secondan vortices (see e.g., Figs. 4.3 through .4. 10 at

1 1-r.S6). The secondan- vortices are relatively weaker than the primary vortices

l:. ecauso :hev nave been in existence only for a short ttme and partly because zhe

2., :: flux is not as large as that in the primary shear layers. Consequerli , Ihe

:':O2f, .1he secondary vc-tices tends to orbit about the centroid of the nrimary

.A comparison of Figs. 47and 4. 10 shows that the region of negative different:al

pressure gczxs -x~ ti me and occupies a large central portion of the camber. In fact.
-h- dracs fo-rce actine on the camber becomes neeative. as it will be seen shorzly.

F cure-s -4. 11 through 4.16 ho.at suitable times, the %elocity- fleld about the

cambr. The rapid growth o the wake during the period of steady uni flowi

e,,! li t cd in Fics. 4;.11I and 4.12. Figure 4. 13 nearly corresponds to the time at whi"ch

_aC deceleration is ipsdon the flow. Figures 4.14 through 4.16 show clearly the

oakwrdmotion of the primar; vortices and the rapid growth of the s co dan

vortice.e I t is seen from Fig. -4.16 that the fluid motion is entirely due to the motion of

th orz:ces in the flow field. The two vortices on each side of the Camber fOrmi a

co-ainz;_rrotating couple and remove themselves rapidly From the field undecr thle
in.fluence of their mutual induction velocity. Subsequenty h bouevleo h

me ffren:ial pressure begins to decrease. Eventually., the differential pressure reduces

to zeroeen-vhr on the camber as the conditions approach to that of a bodly in a
_.,"J. at rest.
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The remainder of the discussion of the results will deal with the variation with

time of the tip velocities and the drag and lift forces.

Figures 4.17 and 4.18 show the velocities V, and V2 as a function of T*. The tip

velocity V1 decreases from an initially large value of about 3.5 to a nearly constant

value of about 1.5 just prior to the onset of deceleration. Subsequently, V1 decreases
rapidly during the period of deceleration and prior to the inception of the secondary

separation. Then V1 increases to about 2 because of the backward motion of the large

vortices near the tips of the camber. Finally, V1 decreases once again as the primary
and secondary vortices move sideways and away from the tips of the camber due to

their mutual induction (see Fig. 4.16).

The variation of V., with T* is significant only during two, relatively short, time

intervals: at the start of the motion and at the start of the deceleration. These are the

periods during which the vorticity flux changes rapidly in order to maintain the Kutta

condition. During the remainder of time V2 is negligibly small, as expected on the

basis of the pioneering experiments of Fage and Johansen (1928) with steady flow over

various types of bluff bodies.

Figures 4.19 and 4.20 show the variation of the drag and lift coefficients as a

function of time. The former is based on the integration of pressure and the latter on

the rate of change of impulse. The drag coefficient calculated through the use of the

rate of change of impulse is somewhat larger than that obtained through the

integration of the instantaneous differential-pressure distribution. This is due to the

fact that the impulse expression includes the rate of change of circulation between two

successive time steps whereas the pressure expression does not. It is a well-known fact
that in real fluids the memory of the fluid resides in its vorticity. Whereas in inviscid

flows there is no memory and the dynamic characteristics of the flow (pressures and

forces) are functions of only the instantaneous state of the flow. The analysis

presented herein is for an inviscid fluid even though the phenomenon concerns the

motion of a real fluid. The question of whether the rate of change of circulation

should be included or excluded in the discrete vortex analysis (first discussed by

Sarpkaya in 1968) is an unsettled issue. It appears that only the comparisons with

experiments can clarify the question.

Figures 4.19 and 4.20 also show that Cd rises rapidly (due to the rapid

accumulation of vorticity in the growing vortices) and begins to decrease as the

vortices develop under the influence of a constant ambient velocity. Then the force
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decreases sharply at the onset of deceleration and goes through zero near the middle of

the deceleration period (T* = 11). The force acquires its largest negative value

towards the end of the deceleration period. Subsequently, the force graduaily decreases

to zero.

Also shown in Figs. 4.19 and 4.20 is the variation of the lift force. It is negligible

even in the later stages of the motion. This is primarily due to the fact that there is

not sufficient time for the development of alternate vortex shedding either during the

period of steady flow or during the period of rapid deceleration.

Figure 4.21 shows a comparison of the calculated (through pressure integration)

and measured drag coefficients. In general the agreement between the calculated and

the measured drag coefficient is quite good. In the time intervals between 13 and 16

and between 19 and 22. the calculated Cd is somewhat larger. The reason for this is as

follows. In the said time intervals the drag coefficient is relatively small and the

viscous effects are relatively important in dissipating the vortices. This is not taken

into consideration in the numerical analysis. It is possible to introduce a small

artificial reduction in circulation in order to bring the calculated and measured values

into closer agreement. This has been avoided in the present analysis in order to keep

the discrete vortex analysis as pure and simple as possible. Figure 4.21 also shows

that the calculation of the drag coefficient through the integration of pressure is

superior to that through the use of the rate of change of impulse.

Finally. a comparison is made between the calculated and photographed flow

fields at corresponding times. Figures 4.22 through 4.24 show at times T* = 6.05. S.55

and 16.30 the flow in the immediate vicinity of the camber (plotted to the same scale).

shows that the agreement between the calculated and observed flow fields is indeed

very good.

B. CONCLUDING REMARKS

The results presented in this section have shown that the discrete vortex model
can be used with confidence to predict the evolution of the wake about a cambered

plate immersed in a an arbitrary time-dependent flow. The evolution of the wake is

remarkably similar (including the formation of the secondary vortices) to that obtained

in flow visualization experiments. The drag coefficients resulting from the analysis and

experiments agree reasonably well. This agreement can be improved with the

introduction of a small circulation dissipation. The drag coefficient calculated through

the integration of the instantaneous pressure distribution agrees more closely with that
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obtained experimentally and points out the fact that the inclusion of the rate of change

of circulation term in the impulse method is not in conformity with the behavior of the

flow.

The development of negative diferential pressures near the central region of the

camber is thought to be primarily responsible for the inception of the partial collapse

of a parachute at high rates of deceleration. This phenomenon takes place even when

the total drag Force acting on the parachute is still positive. The sample analysis

presented herein also shows that the negative differential pressure can cover a large
region of the parachute and even result in negative drag. The basic idea emerging from

the analysis reported herein is that the designs which incorporate into them the idea of'

delaying or preventing the return of the shed vortices to the canopy (e.g..porosity
management, change of deceleration history, parachute shape, dissipation and. or
destruction of the organized wake) will be the ones which could avoid the collapse

phenomenon. Extensive analysis and small scale experiments coupled with few

judiciously selected field tests may help to arrive at practically and phenomenologically

sound parachute designs.
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V. CONCLUSIONS

In this chapter the conclusions reached in the preceding sections are summarized

and the areas in which the greatest need for further work is perceived are pointed out.

A brief review has shown that two-dimensional finite difference and finite element

methods can simulate successfully the low Reynolds number flows but serious
impediments remain to extending them to high Reynolds number range that is of

practical interest. The major obstacles are: the large computational requirements

which grow rapidly with Reynolds number, stability problems, difficulty of

implementing boundary conditions and artificial viscosity.

The discrete vortex model is seen to avoid many of the problems of the Eulerian

finite difference methods but are subject to some of their own. Chief among these is

the introduction of vorticity, determination of the separation points, excessive

computation time for the convection of vortices, and the need to introduce artificial

dissipation to bring the measured and calculated results into closer agreement.

The first section of this study dealt with the numerical simulation of a

sinusoidally oscillating flow about a circular cylinder.

The discrete vortex model has been combined with the boundary layer

calculations and the positions of the separation and stagnation points have been

calculated as accurately as possible for a Keulegan-Carpenter number of K = 10. The

results have accurately predicted the formation of a half Karman vortex street in the

transverse direction. The calculated positions of the vortices were found to be in good

agreement with those obtained experimentally. The measured and calculated drag

force and the differential pressure distributions showed reasonably good agreement.

The results have also shown that the effect of the backward convection of a large

vortex over one side of the cylinder is indeed very pronounced on all the measured and

computed characteristics of the flow. This is one of the most important reasons as to

why the Morison's equation (see e.g., Sarpkaya & Isaacson 1981) fails to represent the

in-line force acting on the cylinder with reasonable accuracy particularly in the range S

< K < 13.

The number of numerical parameters involved in the simulation made a complete

parame.tric study of their effects impossible. However, several tests were made in which
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the time step and convection scheme were varied. The results showed expected

improvements as the time step was reduced and the order of convection scheme was

increased but no undue sensitivity was observed.

The application of the discrete vortex model to a particular time-dependent flow

past a camber required an extensive-study of the velocity field in the vicinity of the

sharp edges of the camber. The results have shown that the nascent vortices can be

introduced only at judiciously selected points. The numerical experiment predicted

satisfactorily the evolution of the wake and the forces acting on the body.

Furthermore, the calculations have provided a plausible explanation for the cause of

parachute collapse, a phenomenon which has provided the impetus for the simulation

described herein.

In the course of the present work, two aspects of the discrete vortex model were

identified that seem to be in greatest need for further investigation. The first is the

determination of the mobile separation points on a body without sharp edges. The

existing methods cannot be considered satisfactory for the prediction of separation in

unsteady laminar and or turbulent boundary layers. The use of Pohlhausen's method

seemed to produce good results (as judged by the experimental data), but it is the most

diflicult part of the model to defend.

The second aspect of the model which requires further work is the discovery of a
systematic and conceptually satisfactory method to reduce vorticity. It seems clear, at

least on the basis of experiments, that there is a physical basis for dissipating vorticity,

but it remains to be proved that the global error involved in doing so is reasonable and

in conformity with the behavior of nature. Future efforts will probably have to be

preceded by careful measurements of the finer details of the unsteady flow field.
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APPENDIX A

NUMERICAL RESULTS

This section presents additional figures showing the evolution of sinusoidallv
oscilatim: flcw abou" a cylinder. It is seen that the convection of the previously shed
vortex over the shoulder of the cylinder precipitates earlier separation. establishes a
pr.c:'rred position for :he next dominant vortex, and gives rise to additional primary
and secondary separation points.
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